If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x^2)-(15x)+12=0
a = 2; b = -15; c = +12;
Δ = b2-4ac
Δ = -152-4·2·12
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{129}}{2*2}=\frac{15-\sqrt{129}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{129}}{2*2}=\frac{15+\sqrt{129}}{4} $
| -40=3(4x+1)+5 | | -4x+29=37 | | 6+3(x+7)=0 | | 2/×+3-7/4-x=0 | | 133x=57 | | -45x-13=77+9 | | -2x-22=-53 | | -4x+11=-11 | | 3x-22=4/5x | | 12+2n=24 | | 20x+5=34 | | -21+3c=23-16 | | 93-4m=27 | | 12y-4-8y=12 | | 3x+(-31)=50 | | 5x-10x=45 | | 5(w-4)3w-2=w+4 | | 5(w-4)=3w-2w+4 | | s-(-17)=55 | | 2(3x-2)=4x-4 | | -17-9x=55 | | 60y=-33 | | p-(-26)=22+43 | | -15+w+(-43)=25 | | x+0.04+x+x^2=1 | | x40=8 | | y-2÷3=4 | | 90°+(x+40)°+(2x-10)°+130=360 | | -21+3c=-23-16 | | -14-5x=-9 | | 2^{3x-1}=25623x−1 | | x-4x+1/5=1/4 |